Skewness estimation for weighted samples. More...
#include <statistics_fwd.hpp>
Public Types | |
typedef numeric::functional::multiplies < Sample, Weight > ::result_type | weighted_sample |
typedef numeric::functional::fdiv < weighted_sample, weighted_sample >::result_type | result_type |
typedef mpl::false_ | is_droppable |
Public Member Functions | |
weighted_skewness_impl (dont_care) | |
template<typename Args > | |
result_type | result (Args const &args) const |
detail::void_ | operator() (dont_care) |
detail::void_ | add_ref (dont_care) |
detail::void_ | drop (dont_care) |
detail::void_ | on_drop (dont_care) |
Skewness estimation for weighted samples.
The skewness of a sample distribution is defined as the ratio of the 3rd central moment and the -th power $ of the 2nd central moment (the variance) of the samples. The skewness can also be expressed by the simple moments:
where are the -th moment and the mean (first moment) of the samples.
The skewness estimator for weighted samples is formally identical to the estimator for unweighted samples, except that the weighted counterparts of all measures it depends on are to be taken.
|
inherited |
typedef numeric::functional::fdiv<weighted_sample, weighted_sample>::result_type boost::accumulators::impl::weighted_skewness_impl< Sample, Weight >::result_type |
typedef numeric::functional::multiplies<Sample, Weight>::result_type boost::accumulators::impl::weighted_skewness_impl< Sample, Weight >::weighted_sample |
|
inline |
|
inlineinherited |
|
inlineinherited |
|
inlineinherited |
|
inlineinherited |
|
inline |
References boost::geometry::math::sqrt(), and boost::accumulators::extract::weighted_mean.